Redis两种数据持久化介绍

Redis提供了将数据定期自动持久化至硬盘的能力,包括RDB和AOF两种方案,两种持久化方案各有优劣,在实际应用中,还是根据我们的场景来选择持久化的方式

RDB方式的持久化几乎不损耗Redis本身的性能,在进行RDB持久化时,Redis主进程唯一需要做的事情就是fork出一个子进程,所有持久化工作都由子进程完成
Redis无论因为什么原因crash掉之后,重启时能够自动恢复到上一次RDB快照中记录的数据。这省去了手工从其他数据源(如DB)同步数据的过程,而且要比其他任何的数据恢复方式都要快

采用RDB持久方式,Redis会定期保存数据快照至一个rbd文件中,并在启动时自动加载rdb文件,恢复之前保存的数据。可以在配置文件中配置Redis进行快照保存的时机:

save [seconds] [changes]

意为在[seconds]秒内如果发生了[changes]次数据修改,则进行一次RDB快照保存,例如

save 60 100

会让Redis每60秒检查一次数据变更情况,如果发生了100次或以上的数据变更,则进行RDB快照保存。
可以配置多条save指令,让Redis执行多级的快照保存策略。
Redis默认开启RDB快照策略如下:

# 时间策略
save 900 1
save 300 10
save 60 10000
# 文件名称
dbfilename dump.rdb
# 文件保存路径
dir /home/work/app/redis/data/
# 如果持久化出错,主进程是否停止写入
stop-writes-on-bgsave-error yes
# 是否压缩
rdbcompression yes
# 导入时是否检查
rdbchecksum yes

也可以通过BGSAVE命令手工触发RDB快照保存

RDB的优点:

对性能影响最小。如前文所述,Redis在保存RDB快照时会fork出子进程进行,几乎不影响Redis处理客户端请求的效率。
每次快照会生成一个完整的数据快照文件,所以可以辅以其他手段保存多个时间点的快照(例如把每天0点的快照备份至其他存储媒介中),作为非常可靠的灾难恢复手段。

使用RDB文件进行数据恢复比使用AOF要快很多。

RDB的缺点:

快照是定期生成的,所以在Redis crash时或多或少会丢失一部分数据。

如果数据集非常大且CPU不够强(比如单核CPU),Redis在fork子进程时可能会消耗相对较长的时间(长至1秒),影响这期间的客户端请求。


采用AOF持久方式时,Redis会把每一个写请求都记录在一个日志文件里。在Redis重启时,会把AOF文件中记录的所有写操作顺序执行一遍,确保数据恢复到最新。
AOF默认是关闭的,一般开启作如下配置:

# 是否开启aof
appendonly yes
# 文件名称
appendfilename "appendonly.aof"
# 同步方式
appendfsync everysec
# aof重写期间是否同步
no-appendfsync-on-rewrite no
# 重写触发配置
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
# 加载aof时如果有错如何处理
aof-load-truncated yes
# 文件重写策略
aof-rewrite-incremental-fsync yes

AOF提供了三种fsync配置,always/everysec/no,通过配置项[appendfsync]指定:

appendfsync no:不进行fsync,将flush文件的时机交给OS决定,速度最快
appendfsync always:每写入一条日志就进行一次fsync操作,数据安全性最高,但速度最慢
appendfsync everysec:折中的做法,交由后台线程每秒fsync一次

随着AOF不断地记录写操作日志,必定会出现一些无用的日志,例如某个时间点执行了命令SET key1 "abc",在之后某个时间点又执行了SET key1 "bcd",那么第一条命令很显然是没有用的。大量的无用日志会让AOF文件过大,也会让数据恢复的时间过长。
所以Redis提供了AOF rewrite功能,可以重写AOF文件,只保留能够把数据恢复到最新状态的最小写操作集。
AOF rewrite可以通过BGREWRITEAOF命令触发,也可以配置Redis定期自动进行:

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

上面两行配置的含义是,Redis在每次AOF rewrite时,会记录完成rewrite后的AOF日志大小,当AOF日志大小在该基础上增长了100%后,自动进行AOF rewrite。同时如果增长的大小没有达到64mb,则不会进行rewrite。
AOF的优点:
最安全,在启用appendfsync always时,任何已写入的数据都不会丢失,使用在启用appendfsync everysec也至多只会丢失1秒的数据。
AOF文件在发生断电等问题时也不会损坏,即使出现了某条日志只写入了一半的情况,也可以使用redis-check-aof工具轻松修复。
AOF文件易读,可修改,在进行了某些错误的数据清除操作后,只要AOF文件没有rewrite,就可以把AOF文件备份出来,把错误的命令删除,然后恢复数据。
AOF的缺点:
AOF文件通常比RDB文件更大
性能消耗比RDB高
数据恢复速度比RDB慢


Redis提供了5种数据淘汰策略:

volatile-lru:使用LRU算法进行数据淘汰(淘汰上次使用时间最早的,且使用次数最少的key),只淘汰设定了有效期的key
allkeys-lru:使用LRU算法进行数据淘汰,所有的key都可以被淘汰
volatile-random:随机淘汰数据,只淘汰设定了有效期的key
allkeys-random:随机淘汰数据,所有的key都可以被淘汰
volatile-ttl:淘汰剩余有效期最短的key

最好为Redis指定一种有效的数据淘汰策略以配合maxmemory设置,避免在内存使用满后发生写入失败的情况。
一般来说,推荐使用的策略是volatile-lru,并辨识Redis中保存的数据的重要性。对于那些重要的,绝对不能丢弃的数据(如配置类数据等),应不设置有效期,这样Redis就永远不会淘汰这些数据。对于那些相对不是那么重要的,并且能够热加载的数据(比如缓存最近登录的用户信息,当在Redis中找不到时,程序会去DB中读取),可以设置上有效期,这样在内存不够时Redis就会淘汰这部分数据。
配置方法:

maxmemory-policy volatile-lru


关于原理部分,我们主要来看RDB与AOF是如何完成持久化的,他们的过程是如何。

在介绍原理之前先说下Redis内部的定时任务机制,定时任务执行的频率可以在配置文件中通过 hz 10 来设置(这个配置表示1s内执行10次,也就是每100ms触发一次定时任务)。该值最大能够设置为:500,但是不建议超过:100,因为值越大说明执行频率越频繁越高,这会带来CPU的更多消耗,从而影响主进程读写性能。

定时任务使用的是Redis自己实现的 TimeEvent,它会定时去调用一些命令完成定时任务,这些任务可能会阻塞主进程导致Redis性能下降。因此我们在配置Redis时,一定要整体考虑一些会触发定时任务的配置,根据实际情况进行调整。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://sulao.cn/post/747.html

我要评论

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。